
CENG3430 Rapid Prototyping of Digital Systems

Appendix:

Use of Signal and Variable

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Use of Signal and Variable

– Outside Process:

Concurrent Statements

– Inside Process:

Sequential Statements

• Combinational Process

– Has no CLK triggering

• Sequential Process

– Has CLK triggering

CENG3430 Appendix: Use of Signal and Variable 2

architecture body

Outside Process

process(sensitivity list)

Combinational Process

No clock triggering

Sequential Process

Clock triggering exists
(if/wait until CLK)

Outside Process

• Signal assignments outside a process

– All the statements outside processes are concurrent and will
be executed once whenever any RHS signal changes.

architecture test_arch of test is
out1 <= in1 and in2; -- concurrent statement
out2 <= in1 or in2; -- concurrent statement

end test_arch;

• Variable assignments outside a process

– Variables can only live inside processes!

CENG3430 Appendix: Use of Signal and Variable 3

➢ Signal assignments outside a process:

All the statements outside processes will be executed once

whenever any RHS signal changes.

➢ Variable assignments outside a process :

Variables can only live inside processes!

➢ Signal assignments inside a combinational process:

Only the last assignment for a particular signal takes effect.

➢ Variable assignments inside a combinational process:

All assignments take effect immediately and sequentially.

Combinational Process

• A combinational process will be executed once

whenever any signal in the sensitivity list changes.

– No clock triggering can be found inside.

process(in1, in2) -- sensitivity list
variable v1, v2: std_logic;
begin

s1 <= in1 and in2;
s1 <= in1 or in2; -- the last asgmt. for s1
v1 := in1 and in2;
v1 := in1 or in2;

end process

CENG3430 Appendix: Use of Signal and Variable 4

Class Exercise 1

CENG3430 Appendix: Use of Signal and Variable 5

Student ID:

Name:

Date:

• Which line(s) will NOT

take effect?

Answer:

• When will the process

be executed?

Answer:

• What are the values of

S_OUT after execution?

S_OUT(1):
S_OUT(2):
S_OUT(3):
S_OUT(4):

S_OUT(5):
S_OUT(6):
S_OUT(7):
S_OUT(8):

1 signal S1, S2: bit;
2 signal S_OUT: bit_vector(1 to 8);
3 process (S1, S2)
4 variable V1, V2: bit;
5 begin
6 V1 := ‘1’;
7 V2 := ‘1’;
8 S1 <= ‘1’;
9 S2 <= ‘1’;

10 S_OUT(1) <= V1;
11 S_OUT(2) <= V2;
12 S_OUT(3) <= S1;
13 S_OUT(4) <= S2;
14 V1 := ‘0’;
15 V2 := ‘0’;
16 S2 <= ‘0’;
17 S_OUT(5) <= V1;
18 S_OUT(6) <= V2;
19 S_OUT(7) <= S1;
20 S_OUT(8) <= S2;
21 end process;

Class Exercise 1 (Answer)

CENG3430 Appendix: Use of Signal and Variable 6

• Which line(s) will NOT

take effect?

Answer:

Line 9

• When will the process

be executed?

Answer:

When S1 or S2 changes

• What are the values of

S_OUT after execution?

S_OUT(1):‘1’
S_OUT(2):‘1’
S_OUT(3):‘1’
S_OUT(4):‘0’

S_OUT(5):‘0’
S_OUT(6):‘0’
S_OUT(7):‘1’
S_OUT(8):‘0’

1 signal S1, S2: bit;
2 signal S_OUT: bit_vector(1 to 8);
3 process (S1, S2)
4 variable V1, V2: bit;
5 begin
6 V1 := ‘1’;
7 V2 := ‘1’;
8 S1 <= ‘1’;
9 S2 <= ‘1’; -- Has no effect

10 S_OUT(1) <= V1; -- Assigns ‘1’
11 S_OUT(2) <= V2; -- Assigns ‘1’
12 S_OUT(3) <= S1; -- Assigns ‘1’
13 S_OUT(4) <= S2; -- Assigns ‘0’
14 V1 := ‘0’;
15 V2 := ‘0’;
16 S2 <= ‘0’; -- Overrides Line 9
17 S_OUT(5) <= V1; -- Assigns ‘0’
18 S_OUT(6) <= V2; -- Assigns ‘0’
19 S_OUT(7) <= S1; -- Assigns ‘1’
20 S_OUT(8) <= S2; -- Assigns ‘0’
21 end process;

Sequential/Clocked Process

CENG3430 Appendix: Use of Signal and Variable 7

• A sequential process will be executed on clock

edges regularly or when async. condition satisfies.

– A clock edge detection can be found inside.
process(sensitivity list)
begin
... -- same as a combinational process
if (risign_edge(clk)) then

out1 <= in1 and in2; -- “<=” works like a flip-flop
end if;
... -- same as a combinational process

end process;

➢ Signal assignments inside a sequential process:

Only the last assignment for a particular signal takes effect;

<= is a flip-flop: The assignment takes effect on the next edge.

➢ Variable assignments inside a sequential process :

All assignments take effect immediately and sequentially.

Class Exercise 2

CENG3430 Appendix: Use of Signal and Variable 8

Student ID:

Name:

Date:

• Find the signal results after clock edges t1 ~ t4:

signal s1: integer:=1;
signal s2: integer:=2;
signal s3: integer:=3;
...
process
begin
wait until rising_edge(clk);
s1 <= s2 + s3;
s2 <= s1;
s3 <= s2;
sum <= s1 + s2 + s3;

end process
end

t1 t2 t3 t4

s1

s2

s3

sum

t1 t2 t3 t4

Class Exercise 2 (Answer)

CENG3430 Appendix: Use of Signal and Variable 9

• Find the signal results after clock edges t1 ~ t4:

signal s1: integer:=1;
signal s2: integer:=2;
signal s3: integer:=3;
...
process
begin
wait until rising_edge(clk);
s1 <= s2 + s3;
s2 <= s1;
s3 <= s2;
sum <= s1 + s2 + s3;

end process
end

t1 t2 t3 t4

s1 2+3 1+2 5+1 3+5

s2 1 5 3 6

s3 2 1 5 3

sum
1+2
+3

5+1
+2

3+5
+1

6+3
+5

t1 t2 t3 t4

➢ Signal assignments inside a sequential process:

<= is a flip-flop: The assignment takes effect on the next edge.

Class Exercise 3

CENG3430 Appendix: Use of Signal and Variable 10

Student ID:

Name:

Date:

• Find the signal results after clock edges t1 ~ t4:

process
variable v1: integer:=1;
variable v2: integer:=2;
variable v3: integer:=3;
begin
wait until rising_edge(clk);
v1 := v2 + v3;
v2 := v1;
v3 := v2;
sum <= v1 + v2 + v3;

end process
end

t1 t2 t3 t4

v1

v2

v3

sum

t1 t2 t3 t4

Class Exercise 3 (Answer)

CENG3430 Appendix: Use of Signal and Variable 11

• Find the signal results after clock edges t1 ~ t4:

process
variable v1: integer:=1;
variable v2: integer:=2;
variable v3: integer:=3;
begin
wait until rising_edge(clk);
v1 := v2 + v3;
v2 := v1;
v3 := v2;
sum <= v1 + v2 + v3;

end process
end

t1 t2 t3 t4

v1 2+3 5+5
10+
10

20+
20

v2 5 10 20 40

v3 5 10 20 40

sum 15 30 60 120

t1 t2 t3 t4

➢ Variable assignments inside a sequential process :

All assignments take effect immediately and sequentially.

➢ Signal assignments outside a process:

All the statements outside processes will be executed once

whenever any RHS signal changes.

➢ Variable assignments outside a process :

Variables can only live inside processes!

Summary

CENG3430 Appendix: Use of Signal and Variable 12

➢ Signal assignments inside a combinational process:

Only the last assignment for a particular signal takes effect.

➢ Variable assignments inside a combinational process:

All assignments take effect immediately and sequentially.

➢ Signal assignments inside a sequential process:

Only the last assignment for a particular signal takes effect;

<= is a flip-flop: The assignment takes effect on the next edge.

➢ Variable assignments inside a sequential process :

All assignments take effect immediately and sequentially.

